文章目錄

哈~如題…就是個自爽的測試~ Q 口Q 偶終於可以有美美的算式了~(握拳) 太令人感動喇~

多行latex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$$
\begin{align*}
& \phi(x,y) = \phi \left(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j \right)
= \sum_{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) = \\
& (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\
\vdots & \ddots & \vdots \\
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \\
\vdots \\
y_n
\end{array} \right)
\end{align*}
$$

$$
\begin{align}
& \phi(x,y) = \phi \left(\sum_{i=1}^n x_iei, \sum{j=1}^n y_jej \right)
= \sum
{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) = \
& (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \
\vdots & \ddots & \vdots \
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \
\vdots \
y_n
\end{array} \right)
\end{align
}
$$

單行插入latex
1
單行插入$\LaTeX{}$$\exp(-\frac{x^2}{2})$

單行插入$\LaTeX{}$:$\exp(-\frac{x^2}{2})$

最後,還會有一個right-click頁面就會全部變白的問題~ 附上解決參考
感謝這篇文章
還有這一篇

文章目錄